RERTR 2017 - 38th International Meeting on Reduced Enrichment for Research and Test Reactors

NOVEMBER 12-15, 2017 EMBASSY SUITES CHICAGO DOWNTOWN MAGNIFICENT MILE HOTEL CHICAGO. IL USA

Analysis of the effect of interaction layer on thermo-physical properties of U-Mo/Al dispersion fuel

Tae Won Cho¹, Yeon Soo Kim², Jong Man Park³, Kyu Hong Lee³, Chong-Tak Lee³, Jae Ho Yang³, Jang Soo Oh³, Dong-Seong Sohn¹,

1: Ulsan National Institute of Science and Technology (UNIST)

UNIST-gil 50, Ulsan 689-798, Republic of Korea

2: Argonne National Laboratory (ANL)

9700 South Cass Avenue, Argonne, IL 60439, USA

3: Korea Atomic Energy Research Institute (KAERI)

989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea

ABSTRACT

This paper describes the analysis results of the thermo-physical properties of heat-treated U-7Mo/Al dispersion fuel where interaction layers between U-Mo and Al were formed. The thermal diffusivity, heat capacity, and density of heat-treated samples were measured to investigate the effects of interaction layer (IL). The measured data were expressed as functions of temperature and U-Mo and IL volume fractions. The thermal diffusivity and density decreased while the heat capacity did not change distinctively after the formation of IL. Using the measured data, the thermal conductivity and density of IL were evaluated.